Научно-исследовательская работа на тему: «Симметрия в жизни человека»


him.na5bal.ru > Биология > Научно-исследовательская работа
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 55

СОВЕТСКОГО РАЙОНА ГОРОД ВОРОНЕЖ

Научно-исследовательская работа

на тему:

«Симметрия в жизни человека»


Выполнил ученик

8 «Б» класса:

Митин Алексей

Руководитель:

учитель математики

Беляева М.В.

Воронеж, 2015г.

Оглавление:

  1. Актуальность темы.

  2. Симметрия и её виды.

  3. Симметрия в искусстве.

    1. Архитектура;

    2. Живопись;

    3. Литература и музыка.

  4. Симметрия и техника.

  5. Симметрия в разных науках.

    1. Биология;

    2. Физика;

    3. Химия.

  6. Выводы.

  7. Используемая литература.


Актуальность темы.

В основе красоты многих форм лежит симметрия или её виды. Эта тема очень обширна и затрагивает помимо математики многие другие области наук, искусства, техники. Именно симметрия преобладает в природе над асимметрией. Представить или вспомнить какое-нибудь асимметричное животное сможет не каждый, ведь их не много и в основном это различные бактерии или простейшие организмы, а так же животные, которые получили свойство асимметрии из-за необходимости. Познание природы и жизни – первая задача человека. И одной из главных ступеней к этой цели является познание симметрии.

Симметрия является той идеей, с помощью которой человек веками пытается объяснить и создать порядок, красоту и совершенство.

Герман Вейль

Цели исследования:

  • изучить понятия симметрии и её видов (центральная, осевая, поворотная, зеркальная и др.),

  • провести исследования по изучению явлений симметрии в биологии, физике, архитектуре, живописи, литературе, транспорте и технике;

  • приобретение навыков самостоятельной работы с большими объемами информации.


Симметрия и её виды.

Понятие симметрии начало складываться очень давно. Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Сейчас она широко используется во многих направлениях современной науки.

Симметрия – это соразмерность, пропорциональность в расположении частей чего-нибудь по обе стороны от центра.

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Различают три основных вида симметрии: зеркальная, осевая и центральная. Так же есть скользящая, винтовая, точечная, поступательная, фрактальная и другие виды симметрии.

Осевая симметрия: две точки называются симметричными относительно прямой, если эта прямая проходит через середину отрезка, соединяющего эти точки и перпендикулярна к нему. Каждая точка этой прямой считается симметричной самой себе. Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка относительно прямой также принадлежит этой фигуре. Также говорят, что фигура обладает осевой симметрией. Классическими фигурами с такой симметрией будут круг, прямоугольник, ромб, квадрат, причём они будут иметь по несколько осей симметрии. Под осевой симметрией так же в естественных науках принимают вращательную или радиальную симметрию - форма симметрии, при которой фигура совпадает сама с собой при вращении объекта вокруг определённой прямой. Центром симметрии объекта называют прямую, на которой пересекаются все оси двусторонней симметрии. Радиальной симметрией обладают такие геометрические объекты, как круг, шар, цилиндр или конус.новый точечный рисунок.bmp
новый точечный рисунок.bmp
новый точечный рисунок.bmp

Центральная симметрия: две точки A и A1 называются симметричными относительно точки O, если O – середина отрезка AA1. Фигура называется симметричной относительно точки O, если для каждой точки фигуры симметричная ей точка относительно точки O также принадлежит этой фигуре. Точка O называется центром симметрии фигуры. Это означает, что фигура обладает центральной симметрией. новый точечный рисунок.bmp
новый точечный рисунок.bmp
c:\users\admin\desktop\новый точечный рисунок.bmp

Примерами фигур, обладающих этой симметрией, будут окружность и параллелограмм. Центр симметрии окружности является центр этой окружности, а центром параллелограмма – точка пересечения его диагоналей. Самый простой пример, который я могу привести - растения, почти в любых растениях можно найти часть, обладающую центральной или осевой симметрией, но при этом сам цветок будет обладать центральной симметрии только в случае чётного количества лепестков.

Зеркальной симметрией называют такое отображение пространства на себя, при котором любая точка M переходит в симметричную ей относительно этой плоскости α точку M1. Когда мы смотрим в зеркало, мы наблюдаем в нём своё отражение – это пример «зеркальной» симметрии. Зеркальное отражение - это пример так называемого «ортогонального» преобразования, изменяющего ориентацию. Я думаю, отражение в реке также будет хорошим примером зеркальной симметрии. Эту симметрию так же называют в других науках билатеральной и двусторонней. Она особенно заметна в архитектуре, а так же в животном мире. Человек так же обладает ей и если мысленно провести линию по центру, то правая часть будет соответствовать левой. новый точечный рисунок.bmp

Симметрия в искусстве.

Мы восхищаемся красотой окружающего мира и не задумываемся, что лежит в основе этой красоты. Наука и искусство – два основных начала в человеческой культуре, две дополняющие друг друга формы высшей творческой деятельности человека. Симметрия в искусстве играет огромную роль и почти не в одном архитектурном сооружении не обходится без неё.

Прекрасные образцы симметрии демонстрируют произведения архитектуры. В ней тесно связанны и строго уравновешены наука, техника, искусство. Люди всегда стремились достичь гармонии в архитектуре. Благодаря этому стремлению на свет появлялись всё новые изобретения, конструкции и стили. Человеческое творчество во всех своих проявлениях тяготеет к симметрии. На этот счёт хорошо высказался известный французский архитектор Ле Корбюзье, в своей книге «Архитектура XX века» он писал: «Человеку необходим порядок: без него все его действия теряют согласованность, логическую взаимность. Чем совершеннее порядок, тем спокойнее и увереннее чувствует себя человек. Архитектурные сооружения, созданные человеком, в большей своей части симметричны. Они приятны для глаза, их люди считают красивыми. Симметрия воспринимается человеком как проявление закономерности, а значит, внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота. Зеркальной симметрии подчинены постройки Древнего Египта, амфитеатры, триумфальные арки римлян, дворцы и церкви Ренессанса, равно как и многочисленные сооружения современной архитектуры. Симметрия сооружения связывается с организацией его функций. Проекция плоскости симметрии - ось здания - определяет обычно размещение главного входа и начало основных потоков движения. Школа, в которой я учусь, так же обладает этим типом симметрии.

В искусстве существует математическая теория живописи. Это теория перспективы. Перспектива - это учение о том, как передать на плоском листе бумаги ощущение глубины пространства, то есть передать окружающим мир таким, как мы его видим. Она основано на соблюдении нескольких законов. Законы перспективы заключаются в том, что чем дальше от нас находится предмет, тем он нам кажется меньше, совсем нечетким, на нем меньше деталей, основание его выше. Симметричная композиция легко воспринимается зрителем, сразу привлекая внимание к центру картины, в котором и находится то главное, относительно которого разворачивается действие. Живописцы эпохи Возрождения часто строили свои композиции по законам симметрии. Такое построение позволяет достигнуть впечатления покоя, величественности, особой торжественности и значимости событий. Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому.

В музыке и литературе так же наблюдается симметрия и определённые пропорции. Например, во второй половине XIX века анализируя произведения Баха, Э.К. Розенов пришёл к выводу, что в них «господствуют закон золотого сечения и закон симметрии». В его исследовании золотое сечение рассматривается как условие соразмерности музыкального произведения, при этом золотое сечение должно решать три задачи: 1) Устанавливать соразмерное отношение между целым и его частями; 2) быть особым местом удовлетворения подготовленного ожидания по отношению к целому и его частям; 3) направлять внимание слушателя на те места музыкального произведения, которым автор придаёт наиболее большее значение в связи с основной идеей произведения. В работе М.А. Марутаева золотое сечение, на ряду с так называемыми качественной и нарушенной симметрией, расценивается как предпосылка гармонии к музыке. Работы, посвящённые исследованию золотого сечения в музыке, играют важную роль в постижении специфики музыкального искусства. Самый распространённый вид симметрии в музыке - это трансляционный вид. В этом случае музыкальная фраза, мелодия или более крупные отрывки музыкального произведения повторяются, оставаясь неизменными. Все песни, в которых припев повторяется несколько раз, будут иметь этот вид симметрии.

Пропорция и симметрия объекта всегда необходима нашему зрительному восприятию, для того чтобы мы могли считать этот объект красивым. Баланс и пропорция частей, относительно целого, обязательны для симметрии. Смотреть на симметричные изображения приятней, нежели на асимметричные. Трудно найти человека, не любовавшегося орнаментами. В них можно обнаружить затейливое сочетание разных типов симметрии.

Симметрия в технике.

Технические объекты – самолёты, автомашины, ракеты, молотки, гайки – практически все они от самых малых технических приборов до громадных ракет обладают той или иной симметрией и это не случайно. В технике красота, соразмерность механизмов часто бывает связана с их надежностью, устойчивостью в работе. Симметричная форма дирижабля, самолета, подводной лодки, автомобиля и т.д. обеспечивает хорошую обтекаемость воздухом или водой, а значит, и минимальное сопротивление движению. Любой станок, машина, прибор, механизм, узел должны компоноваться вокруг установленной симметрии. На заре развития авиации наши знаменитые учёные Н. Е. Жуковский и С. А. Чаплыгин исследовали полёт птиц, чтобы сделать выводы относительно лучшей формы крыла и условий его полёта. Большую роль в этом сыграла, конечно, симметрия. Даже современные боевые истребители, такие как Су-27, МиГ-29 и Т-50 в основе своей спроектированы по законам симметрии.

c:\users\ам ням\desktop\au12.jpgc:\users\ам ням\desktop\aa245cd7444326c524359ce4eebfb851_122.jpg15.jpg

Симметрия в разных науках.

Все представители животного царства – млекопитающие, птицы, рыбы, насекомые, черви, паукообразные и др. в своих внешних формах и строении своего скелета демонстрируют нам зеркальную симметрию, т. е. равенство правого и левого. Рассматривая любое из этих живых существ, мы можем мысленно провести через него вертикальную плоскость, относительно которой то, что расположено справа будет зеркальным отражением того, что расположено слева, и наоборот. Равенство это выполняется не с точностью до долей миллиметра, может быть, и не до миллиметра, но, тем не менее, с некоторой степенью приближения, зеркальная симметрия налицо. Зрительно мы воспринимаем живые организмы как симметричные. Под отражениями понимают любые зеркальные отражения — в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркальные половины, называется плоскостью симметрии. Бабочка, лист растения – самые простые примеры фигур обладающих лишь одной плоскостью симметрии, делящей ее на две зеркально равные части. Поэтому данный вид симметрии в биологии называется двусторонней или билатеральной. Полагают, что такая симметрия связана с различиями движений организмов вверх — вниз, вперед — назад, тогда как их движения направо — налево совершенно одинаковы. Нарушение билатеральной симметрии неизбежно приводит к торможению движения одной из сторон и изменению поступательного движения. Поэтому не случайно активно подвижные животные двусторонне симметричны. Но такой вид симметрии встречается и у неподвижных организмов и их органов. Она возникает в этом случае вследствие неодинаковости условий, в которых находятся прикрепленная и свободная стороны. По-видимому, так объясняется билатеральность некоторых листьев, цветков и лучей коралловых полипов. Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Поворотная симметрия – это такая симметрия, при котором объект совмещается сам с собой при повороте на 360°/n. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко. Дальнейшие наши поиски были сосредоточены на центральной симметрии. Она наиболее характерна для цветов и плодов растений. Центральная симметрия характерна для различных плодов, но мы остановились на ягодах: голубика, черника, вишня, клюква. Рассмотрим разрез любой из этих ягод. В разрезе она представляет собой окружность, а окружность, как нам известно, имеет центр симметрии. Центральную симметрию можно наблюдать на изображении следующих цветов: цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых случаях центральной симметрией обладает и изображение всего цветка ромашки.

Симметрия – одно из фундаментальных понятий в современной физике, играющее важнейшую роль в формулировке современных физических теорий. Симметрии, учитываемые в физике, довольно разнообразны, некоторые из них в современной физике считаются точными, другие – лишь приближёнными. В 1918 году немецкий математик Нётер доказала теорему, согласно которой каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения. Наличие этой теоремы позволяет проводить анализ физической системы на основе имеющихся данных о симметрии, которой эта система обладает. Из неё, например, следует, что симметричность уравнений движения тела с течением времени приводит к закону сохранения энергии; симметричность относительно сдвигов в пространстве — к закону сохранения импульса; симметричность относительно вращений — к закону сохранения момента импульса. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях, которым может быть подвергнута система, то говорят, что эти законы обладают симметрией относительно данных преобразований.

Симметрия в физике

Преобразования

Соответствующая
инвариантность


Соответствующий закон
сохранения


↕ Трансляция времени

Однородность
времени

…энергии

⊠ С, Р, СР и Т - симметрии

Изотропность
времени

…чётности

↔Трансляции пространства

Однородность
пространства

…импульса

↺ Вращения пространства

Изотропность
пространства

…момента
импульса

⇆ Группа Лоренца

Относительность
Лоренц-инвариантность

…4-импульса

~ Калибровочное преобразование

Калибровочная инвариантность

…заряда



Суперсимметрия - гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот. По состоянию на 2015 год суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами. Данное требование не выполняется для известных в природе частиц. Независимо от существования суперсимметрии в природе, математический аппарат суперсимметричных теорий оказывается полезным в самых различных областях физики. В частности, суперсимметричная квантовая механика позволяет находить точные решения весьма нетривиальных уравнений Шрёдингера. Суперсимметрия оказывается полезной в некоторых задачах статистической физики.

Симметрия в химии проявляется в геометрической конфигурации молекул. Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. Обычный способ изображения молекул в органической химии - это  структурные формулы. В 1810 году Д.Дальтон, желая показать своим слушателям как атомы, комбинируясь, образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием. Молекула воды и водорода имеет плоскость симметрии. Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения. img71

В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка - это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают поворотной симметрией и, кроме того, зеркальной симметрией. Кристалл - это твердое тело, имеющее естественную форму многогранника. Соль, лед, песок и т.д. состоят из кристаллов. Прежде всего, Ромэ-Делиль подчёркивал правильную геометрическую форму кристаллов исходя из закона постоянства углов между их гранями. Он писал: «К разряду кристаллов стали относить все тела минерального царства, для которых находили фигуру геометрического многогранника…» Правильная форма кристаллов возникает по двум причинам. Во-первых, кристаллы состоят из элементарных частичек - молекул, которые сами имеют правильную форму. Во-вторых, «такие молекулы имеют замечательное свойство соединяться между собой в симметричном порядке». Почему же так красивы и привлекательны кристаллы? Их физические и химические свойства определяются их геометрическим строением.

Вывод.

Существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт ещё раз подчеркивает гармоничность нашего мира. Человеческое представление о красивом формируется под влиянием того, что человек видит в живой природе. В своих творениях, очень далёких друг от друга, она может использовать одни и те же принципы. И человек в живописи, скульптуре, архитектуре, музыке применяет эти же принципы. Основополагающими принципами красоты при этом являются пропорции и симметрия. Без симметрии наш мир выглядел бы совсем по-другому. Ведь это именно на симметрии основаны многие законы. Почти во всём, что нас окружает, есть та или иная симметрия. О ней можно говорить бесконечно. Симметрия, проявляясь в самых различных объектах природного мира, несомненно, отражает наиболее общие ее свойства. Поэтому изучение симметрии и сопоставление с результатами является удобным и надежным инструментом познания гармонии мира.

Математика выявляет порядок, симметрию и определённость, а это – важнейшие виды прекрасного.

Аристотель

Используемая литература.

  • ru.wikipedia.org

  • www.allbest.ru

  • www.900igr.net

  • Тарасов Л. В. Этот удивительный симметричный мир – М.: Просвещение, 1982.

  • Урманцев Ю.А. Симметрия в природе и природа симметрии – М.: Мысль, 1974.

  • Ожегов С.И. Словарь русского языка – М.: Рус. Яз., 1984.

  • Л.С. Атанасян Геометрия, 7-9 – М.: Просвещение, 2010.

  • Л.С. Атанасян Геометрия, 10-11 – М.: Просвещение, 2013.

  • Вейль Г. Симметрия. Перевод с английского Б.В. Бирюкова и Ю.А. Данилова – М.: Издательство «Наука», 1968.

Поделиться в соцсетях



Похожие:

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconМуниципальное общеобразовательное учреждение «нововасюганская сош»...
Планирование деятельности исследовательский этап

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconНаучно-исследовательская работа «энергосберегающая вентиляция жилых...
Качество воздуха определяется его химическим составом, физическими свойствами, а так же наличием в нем посторонних частиц. Современные...

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconНаучно-исследовательская работа студента на тему: «определение содержания...
...

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconНаучно-исследовательская работа на тему: «Тайна квадратного корня»
Поэтому и были придуманы многочисленные формулы и способы извлечения квадратного корня, некоторые из которых относят к Древней Греции,...

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconИсследовательская работа «Определение состава почвы пришкольного участка»
Когда оседлое земледелие стало основной деятельностью человека, для него вопрос урожая стал вопросом жизни и смерти. Неурожайный...

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconИсследовательская работа по химии на тему: «Индикаторы в нашей жизни»
К ним относятся антоцианы, ксантофиллы, каротиноиды, катехины, флавонолы, флавононы и другие. Польза многих растений несомненна....

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconИсследовательская работа Тема «Анализ качества продуктов питания от разных производителей»
Всемирная организация здравоохранения предупреждает о том, что здоровье человека всего лишь на 10 зависит от качества медицинского...

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconИсследовательская работа на тему: «Из чего в древности делали краски»
Тему исследования красок я выбрала потому, что очень люблю рисовать. Однажды я задумалась над вопросами: когда появились краски?...

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconРеферат по дисциплине «Безопасность жизнедеятельности» На тему: «Антропогенные опасности»
Возникновение и развитие научно-практической деятельности в области безопасности жизнедеятельности человека

Научно-исследовательская работа на тему: «Симметрия в жизни человека» iconНаучно-исследовательская работа по теме «Нитраты добро или зло!»
Что такое нитраты?


Химия




При копировании материала укажите ссылку © 2000-2017
контакты
him.na5bal.ru
..На главную